Hubble Detects Helium In Atmosphere Of Exoplanet WASP-107b For The First Time

MessageToEagle.com – Helium in the atmosphere of the exoplanet WASP-107b has been detected for the first time by astronomers using the NASA/ESA Hubble Space Telescope and the discovery demonstrates the ability to use infrared spectra to study exoplanet extended atmospheres.

The international team of astronomers, led by Jessica Spake, a PhD student at the University of Exeter in the UK, used Hubble’s Wide Field Camera 3 to discover helium in the atmosphere of the exoplanet WASP-107b This is the first detection of its kind.

The exoplanet WASP-107b is a gas giant, orbiting a highly active K-type main sequence star. The star is about 200 light-years from Earth. Using spectroscopy, scientists were able to find helium in the escaping atmosphere of the planet -- the first detection of this element in the atmosphere of an exoplanet. Credit: ESA/Hubble, NASA, M. Kornmesser
The exoplanet WASP-107b is a gas giant, orbiting a highly active K-type main sequence star. The star is about 200 light-years from Earth. Using spectroscopy, scientists were able to find helium in the escaping atmosphere of the planet — the first detection of this element in the atmosphere of an exoplanet. Credit: ESA/Hubble, NASA, M. Kornmesser

“Helium is the second-most common element in the Universe after hydrogen. It is also one of the main constituents of the planets Jupiter and Saturn in our Solar System. However, up until now helium had not been detected on exoplanets – despite searches for it,” Spake explains.

The team made the detection by analyzing the infrared spectrum of the atmosphere of WASP-107b. Previous detections of extended exoplanet atmospheres have been made by studying the spectrum at ultraviolet and optical wavelengths; this detection therefore demonstrates that exoplanet atmospheres can also be studied at longer wavelengths.

“The strong signal from helium we measured demonstrates a new technique to study upper layers of exoplanet atmospheres in a wider range of planets.”

“Current methods, which use ultraviolet light, are limited to the closest exoplanets. We know there is helium in the Earth’s upper atmosphere and this new technique may help us to detect atmospheres around Earth-sized exoplanets – which is very difficult with current technology.”

WASP-107b is one of the lowest density planets known: While the planet is about the same size as Jupiter, it has only 12% of Jupiter’s mass. The exoplanet is about 200 light-years from Earth and takes less than six days to orbit its host star.

The amount of helium detected in the atmosphere of WASP-107b is so large that its upper atmosphere must extend tens of thousands of kilometres out into space. This also makes it the first time that an extended atmosphere has been discovered at infrared wavelengths.

Since its atmosphere is so extended, the planet is losing a significant amount of its atmospheric gases into space — between ~0.1-4% of its atmosphere’s total mass every billion years As far back as the year 2000, it was predicted that helium would be one of the most readily-detectable gases on giant exoplanets, but until now, searches were unsuccessful.

“Our new method, along with future telescopes such as the NASA/ESA/CSA James Webb Space Telescope, will allow us to analyse atmospheres of exoplanets in far greater detail than ever before,” David Sing, co-author of the study also from the University of Exeter, added.

Source

MessageToEagle.com 

Expand for references

References:

Paper